Monte-Carlo approach to the volume of etangled two-qubit systems

Gerdt V.P., Khvedelidze A.M., Evlakhov S.A.

Laboratory of Information Technologies, Joint Insitute for Nuclear Research

26 august 2012

Is our world more "classical" or more "quantum"? What quantum states are more prevalent: separable or entangled?
It has been shown, that separability is associated with the possibility of parital time reversal, [1], [2].

We work in the finite-dimensional Hilbert space \mathcal{H}, more precisely, its subspace of all physically feasible states. Any quantum system of our intrest can be represented by its density matrix:

$$
\begin{equation*}
\mathcal{M}_{d}:=\left\{\rho: \rho=\rho^{\dagger} ; \rho \geq 0 ; \operatorname{Tr}(\rho)=1 ; \operatorname{dim}(\rho)=d\right\} \tag{1}
\end{equation*}
$$

i.e. positive definite Hermitian matrices with unit trace. It is a convex set of dimension $d^{2}-1$.

The simplest system is qubit - two-level quantum system, an analogue of classical bit. It has representation:

$$
\rho=\frac{1}{2}(1+\alpha \sigma)
$$

where $\alpha \in \mathbb{R}^{3}$,

$$
\alpha=\operatorname{Tr}(\sigma \rho) .
$$

and σ is the set of Pauli matrices.

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

D-level quantum system [3]:

$$
\rho=\frac{1}{n}\left(\mathbf{I}_{n}+c \xi \lambda\right),
$$

where $\xi=\langle\lambda\rangle \in \mathbb{R}^{d^{2}-1}$ is $d^{2}-1$ dimenstional Bloch vector, $\lambda=\left(\lambda_{\mathbf{1}}, \ldots, \lambda_{\mathbf{d}^{2}-\mathbf{1}}\right)$ are elements of $s u(d)$ algebra and $c \in \mathbb{R}$ is normalization factor.

Zyczkowski and Sommers' normalization [4]:

$$
c=d
$$

and normalizing λ_{i} by condition

$$
\operatorname{Tr}\left(\lambda_{i}^{2}\right)=1
$$

Gerdt, Khvedelidze and Palii's normalization [3]:

$$
\begin{gathered}
c=\sqrt{\frac{n(n-1)}{2}} \\
\lambda_{i} \lambda_{j}=\frac{2}{d} \delta_{i j} \mathbb{I}_{d}+\left(d_{i j k}+i f_{i j k}\right) \lambda_{k}
\end{gathered}
$$

$\delta_{i j}$ is the Kronecker symbol,

$$
\left.d_{i j k}=\frac{1}{4} \operatorname{Tr}\left(\left\{\lambda_{i}, \lambda_{j}\right\}, \lambda_{k}\right), \quad f_{i j k}=-\frac{i}{4} \operatorname{Tr}\left(\left[\lambda_{i}, \lambda_{j}\right] \lambda_{k}\right]\right),
$$

where

$$
\left\{\lambda_{i}, \lambda_{j}\right\}=\lambda_{i} \lambda_{j}+\lambda_{j} \lambda_{i}, \quad\left[\lambda_{i}, \lambda_{j}\right]=\lambda_{i} \lambda_{j}-\lambda_{j} \lambda_{i}
$$

The metrics used (Hilbert-Schmidt metric):

$$
D_{H S}\left(\rho_{1}, \rho_{2}\right)=\left\|\rho_{1}-\rho_{2}\right\|_{H S}=\sqrt{\operatorname{Tr}\left[\left(\rho_{1}-\rho_{2}\right)^{2}\right]}
$$

corresponding metric tensor:

$$
\left(d s_{H S}\right)^{2}=\operatorname{Tr}\left[(d \rho)^{2}\right] .
$$

If we use the representation:

$$
\rho=\frac{1}{n}\left(\mathbb{I}_{n}+d \xi \lambda\right),
$$

then

$$
\mathrm{D}_{H S}\left(\rho_{\tau_{1}}, \rho_{\tau_{2}}\right)=D_{E}\left(\tau_{1}, \tau_{2}\right) .
$$

In the trivial case of one qubit the phisycally feasible states is just Bloch sphere. In case of n qubits, the volume of the physical states is given by the following formula [4]:

$$
\operatorname{Vol}_{H S}\left(\mathcal{M}_{d}\right)=\sqrt{d}(2 \pi)^{d(d-1) / 2} \frac{\left.\Gamma(1) \cdots \Gamma_{(} d\right)}{\Gamma\left(d^{2}\right)}
$$

Lepage's Vegas algorithm [5]:

$$
\begin{gathered}
\int_{\Omega} f(x) d x . \\
S^{(1)}=\frac{1}{M} \sum_{x} \frac{f(x)}{p(x)},
\end{gathered}
$$

where points (x) are randomly selected. Here M is the number of points, $p(x)$ - probability distribution. It is possible to show that:

$$
S^{(1)}=\frac{1}{M} \sum_{x} \frac{f(x)}{p(x)} \rightarrow I, \quad \text { as } \quad M \rightarrow \infty
$$

If M is large enough: $\sigma^{2} \simeq \frac{S^{(2)}-\left(S^{(1)}\right)^{2}}{M-1}$, where $S^{(2)}=\frac{1}{M} \sum_{x}\left(\frac{f(x)}{p(x)}\right)^{2}$.

The state of a quantum system is physically feasible, i.e. its density matrix is positive semi-definite, if and only if the coefficients of its characteristic equation are non-negative:

$$
\begin{gathered}
\left|\mathbb{I}_{n} x-\rho\right|=x^{n}-S_{1} x^{n-1}+S_{2} x^{n-2}-\ldots+(-1)^{n} S_{n}=0 . \\
S_{i} \geq 0 .
\end{gathered}
$$

For the system of two qubits, one can represents this condition in the terms of corresponding "Bloch" vector ξ :

$$
\begin{align*}
& S_{1}=1 \\
& S_{2}=\frac{1}{2!} \frac{n-1}{n}(1-\xi \cdot \xi), \\
& S_{3}=\frac{1}{3!} \frac{(n-1)(n-2)}{n^{2}}(1-3 \xi \cdot \xi+2(\xi \vee \xi) \cdot \xi), \\
& S_{4}=\frac{1}{4!} \frac{(n-1)(n-2)(n-3)}{n^{3}} \tag{2}\\
&\left(1-6 \xi \cdot \xi+8(\xi \vee \xi) \cdot \xi+3 \frac{n-1}{n-3}(\xi \cdot \xi)^{2}-\right. \\
&\left.6 \frac{n-2}{n-3}(\xi \cdot \xi) \cdot(\xi \cdot \xi)\right),
\end{align*}
$$

where $\xi \vee \xi$ is vector convolution: $(\xi \vee \xi)_{k}=\sqrt{\frac{d(d-1)}{2}} \frac{1}{d-1} d_{i j k} \xi_{i} \xi_{j j_{\underline{\underline{\underline{~}}}}}$

Peres-Horodecki criterion

We will also remdind Peres-Horodecki criterion, that is used for detemining entangled states.
Let ρ be a density matrix which acts on tensor product of Hilbert spaces: $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

$$
\rho=\sum_{i j k l} p_{k l}^{i j}|i\rangle\langle j| \otimes|k\rangle\langle I|
$$

Introduce partial transpose operator as following:

$$
\rho^{T_{B}}:=I \otimes T(\rho)=\sum_{i j k l} p_{k \mid}^{i j}|i\rangle\langle j| \otimes(|k\rangle\langle I|)^{T}=\sum_{i j k l} p_{k \mid}^{i j}|i\rangle\langle j| \otimes|I\rangle\langle k|
$$

If ρ is separable then $\rho^{T_{B}}$ has non-negative eigenvalues. This criterion is inconclusive if dimension is larger than 6.

There exist a more simple criterion. If we recall the representation:

$$
\rho=\frac{1}{n}\left(\mathbb{I}_{n}+d \xi \lambda\right),
$$

then we can formulate the separability criterion in the terms of ξ vector: $\rho^{T_{B}}$ has non-negative eigenvalues if and only if its Bloch vector ξ^{\prime} satisfies 2 . ξ^{\prime} can be easily expressed via ξ vector, corresponding to the matrix ρ :

$$
\begin{array}{rlr}
\xi_{1}^{\prime}=\xi_{1}, & \xi_{2}^{\prime}=\xi_{2}, & \xi_{3}^{\prime}=\xi_{3}, \\
\xi_{4}^{\prime}=\xi_{4}, & \xi_{5}^{\prime}=-\xi_{5}, & \xi_{6}^{\prime}=-\xi_{6}, \\
\xi_{7}^{\prime}=\xi_{7}, & \xi_{8}^{\prime}=-\xi_{8}, & \xi_{9}^{\prime}=\xi_{9}, \\
\xi_{10}^{\prime}=\xi_{10}, & \xi_{11}^{\prime}=-\xi_{11}, & \xi_{12}^{\prime}=\xi_{12}, \\
\xi_{13}^{\prime}=\xi_{13}, & \xi_{14}^{\prime}=-\xi_{14}, & \xi_{15}^{\prime}=\xi_{15},
\end{array}
$$

To calculate numerically the volume of the all physically feasible and separable states, the program in c was written. We used GNU GCC compiler and Open Source GSL library. It was run on Intel(R) Xeon(R) CPU E5410 @ 2.33 GHz .
In the table and on picutre one can see how the precision of calculations depends on amount of points:

Figure: Volume of physical states

Figure: Estimated Error (σ) for the volume of physical states

Figure: Volume of separable states

Figure: Estimated Error for the volume of separable states

N	Estimation
1000000	$(7.4 \pm 0.58) \times 10^{-6}$
2000000	$(2.5 \pm 0.4) \times 10^{-11}$
4000000	$(1.1 \pm 0.5) \times 10^{-10}$
8000000	$(9.6 \pm 0.2) \times 10^{-6}$
16000000	$(8.4 \pm 0.5) \times 10^{-6}$
24000000	$(9.6 \pm 0.1) \times 10^{-6}$
32000000	$(9.8 \pm 0.0) \times 10^{-6}$
40000000	$(9.7 \pm 0.0) \times 10^{-6}$

Figure: Estimation for the volume of physical states

N	Estimation
2000000	$(2.35 \pm 0.03) \times 10^{-6}$
4000000	$(2.33 \pm 0.03) \times 10^{-6}$
8000000	$(5.22 \pm 2) \times 10^{-10}$
8500000	$(2.31 \pm 0.02) \times 10^{-6}$
16000000	$(2.361 \pm 0.005) \times 10^{-6}$
19000000	$(2.363 \pm 0.006) \times 10^{-6}$

Figure: Estimation for the volume of separable states

围 G．Vidal A．Sanpera，R．Tarrach． quant－ph／9707041．

囲 P．Busch and J．Lahti．
Found．Phys．，20：1429， 1990.
围 V．Gerdt Yu．Palii and A．Khvedelidze．
On the ring of local polynomial invariants for a pair of entangled qubits．
J．Math．Sci．，168：368－378， 2010.
围 H．Sommers K．Zyczkowski．
Hilbertschmidt volume of the set of mixed quantum states， 2003.

囯 G．P．Lepage．
A new algorithm for adaptive multidimensional integration． Journal of Computational Physics，27（2）：192－203，May 1978.

