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Is our world more "classical" or more "quantum"? What quantum
states are more prevalent: separable or entangled?
It has been shown, that separability is associated with the
possibility of parital time reversal, [1], [2].
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We work in the finite-dimensional Hilbert space H, more precisely,
its subspace of all physically feasible states. Any quantum system
of our intrest can be represented by its density matrix:

Md :=
{
ρ : ρ = ρ†; ρ ≥ 0; Tr(ρ) = 1; dim(ρ) = d

}
, (1)

i.e. positive definite Hermitian matrices with unit trace. It is a
convex set of dimension d2 − 1.
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The simplest system is qubit — two-level quantum system, an
analogue of classical bit. It has representation:

ρ =
1
2

(1 + ασ) ,

where α ∈ R3,

α = Tr (σρ) .

and σ is the set of Pauli matrices.

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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D-level quantum system [3]:

ρ =
1
n

(In + c ξλ) ,

where ξ = 〈λ〉 ∈ Rd2−1 is d2 − 1 dimenstional Bloch vector,
λ = (λ1, . . . , λd2−1) are elements of su(d) algebra and c ∈ R is
normalization factor.
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Zyczkowski and Sommers’ normalization [4]:

c = d

and normalizing λi by condition

Tr(λ2
i ) = 1
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Gerdt, Khvedelidze and Palii’s normalization [3]:

c =

√
n(n − 1)

2

λiλj =
2
d
δijId + (dijk + ifijk)λk ,

δij is the Kronecker symbol,

dijk =
1
4
Tr ({λi , λj} , λk) , fijk = − i

4
Tr ([λi , λj ]λk ]) ,

where

{λi , λj} = λiλj + λjλi , [λi , λj ] = λiλj − λjλi .
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The metrics used (Hilbert-Schmidt metric):

DHS (ρ1, ρ2) = ||ρ1 − ρ2||HS =
√

Tr [(ρ1 − ρ2)2]

corresponding metric tensor:

(dsHS)2 = Tr
[
(dρ)2] .

If we use the representation:

ρ =
1
n

(In + d ξλ) ,

then
DHS(ρτ1 , ρτ2) = DE (τ1, τ2).
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In the trivial case of one qubit the phisycally feasible states is just
Bloch sphere. In case of n qubits, the volume of the physical states
is given by the following formula [4]:

VolHS(Md ) =
√

d(2π)d(d−1)/2 Γ(1) · · · Γ(d)

Γ(d2)
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Lepage’s Vegas algorithm [5]:∫
Ω

f (x)dx .

S (1) =
1
M

∑
x

f (x)

p(x)
,

where points (x) are randomly selected. Here M is the number of
points, p(x) — probability distribution. It is possible to show that:

S (1) =
1
M

∑
x

f (x)

p(x)
→ I , as M →∞,

If M is large enough: σ2 w S(2)−(S(1))2

M−1 , where

S (2) = 1
M
∑

x

(
f (x)
p(x)

)2
.

Volume of the 2-qubit systems



Introduction
Metrics

Vegas Algorithm
Volume of physical states

Volume of separable states

The state of a quantum system is physically feasible, i.e. its density
matrix is positive semi-definite, if and only if the coefficients of its
characteristic equation are non-negative:

|Inx − ρ| = xn − S1xn−1 + S2xn−2 − ...+ (−1)nSn = 0.

Si ≥ 0.
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For the system of two qubits, one can represents this condition in
the terms of corresponding "Bloch" vector ξ:

S1 = 1,

S2 =
1
2!

n − 1
n

(1− ξ · ξ),

S3 =
1
3!

(n − 1)(n − 2)

n2 (1− 3ξ · ξ + 2(ξ ∨ ξ) · ξ),

S4 =
1
4!

(n − 1)(n − 2)(n − 3)

n3 (2)

(1− 6ξ · ξ + 8(ξ ∨ ξ) · ξ + 3
n − 1
n − 3

(ξ · ξ)2−

6
n − 2
n − 3

(ξ · ξ) · (ξ · ξ)),

where ξ ∨ ξ is vector convolution: (ξ ∨ ξ)k =
√

d(d−1)
2

1
d−1dijkξiξj .
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Peres-Horodecki criterion

We will also remdind Peres-Horodecki criterion, that is used for
detemining entangled states.
Let ρ be a density matrix which acts on tensor product of Hilbert
spaces: HA ⊗HB .

ρ =
∑
ijkl

pij
kl |i〉〈j | ⊗ |k〉〈l |
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Introduce partial transpose operator as following:

ρTB := I ⊗ T (ρ) =
∑
ijkl

pij
kl |i〉〈j | ⊗ (|k〉〈l |)T =

∑
ijkl

pij
kl |i〉〈j | ⊗ |l〉〈k |

If ρ is separable then ρTB has non-negative eigenvalues. This
criterion is inconclusive if dimension is larger than 6.
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There exist a more simple criterion. If we recall the representation:

ρ =
1
n

(In + d ξλ) ,

then we can formulate the separability criterion in the terms of ξ
vector: ρTB has non-negative eigenvalues if and only if its Bloch
vector ξ′ satisfies 2. ξ′ can be easily expressed via ξ vector,
corresponding to the matrix ρ:

ξ′1 = ξ1, ξ′2 = ξ2, ξ′3 = ξ3,

ξ′4 = ξ4, ξ′5 = −ξ5, ξ′6 = −ξ6,
ξ′7 = ξ7, ξ′8 = −ξ8, ξ′9 = ξ9,

ξ′10 = ξ10, ξ′11 = −ξ11, ξ′12 = ξ12,

ξ′13 = ξ13, ξ′14 = −ξ14, ξ′15 = ξ15,
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To calculate numerically the volume of the all physically feasible
and separable states, the program in c was written. We used GNU
GCC compiler and Open Source GSL library. It was run on Intel(R)
Xeon(R) CPU E5410 @ 2.33GHz.
In the table and on picutre one can see how the precision of
calculations depends on amount of points:
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Figure: Volume of physical states
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Figure: Estimated Error (σ) for the volume of physical states
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Figure: Volume of separable states
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Figure: Estimated Error for the volume of separable states
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N Estimation
1000000 (7.4± 0.58)× 10−6

2000000 (2.5± 0.4)× 10−11

4000000 (1.1± 0.5)× 10−10

8000000 (9.6± 0.2)× 10−6

16000000 (8.4± 0.5)× 10−6

24000000 (9.6± 0.1)× 10−6

32000000 (9.8± 0.0)× 10−6

40000000 (9.7± 0.0)× 10−6

Figure: Estimation for the volume of physical states
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N Estimation
2000000 (2.35± 0.03)× 10−6

4000000 (2.33± 0.03)× 10−6

8000000 (5.22± 2)× 10−10

8500000 (2.31± 0.02)× 10−6

16000000 (2.361± 0.005)× 10−6

19000000 (2.363± 0.006)× 10−6

Figure: Estimation for the volume of separable states
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