Perturbation theory schemes for analysis of spheroidal quantum dot models in adiabatic approximation

A.A. Gusev, L.L. Hai

Joint Institute for Nuclear Research, Dubna, Russia

26 August 2012, MPAMMCS, Dubna

OUTLINE

- Problems. In effective mass approximation for electronic (hole) states of spheroidal quantum dots under influence of the homogeneous electric field the boundary-value problems are formulated in the framework of Kantorovich and adiabatic methods.
- Methods. The different perturbation theory schemes are derived by using sets of adiabatic basis functions given in analytical form.
- Results. Comparative analysis of eigenvalues and eigenfunctions of the problem is presented based on both numerical and analytical methods.
- Applications Calculations of absorption coefficient of ensembles of spheroidal quantum dots in the homogeneous electric fields.

Problem

Spectral and optical characteristics of models of bulk semiconductor and low dimensional semiconductor nanostructures: quantum wells(QWs), quantum wires(QWrs) and quantum $\operatorname{dots(QDs)~}$

(b)

Figure 1. AFM views of L LPE grown InAsSbP unencapsulated QDs on $\operatorname{InAs}(100)$ substrate: (a) oblique $S=2 \times 2 \mu \mathrm{~m}^{2}$. (b) oblique $S=1 \times 1 \mu \mathrm{~m}^{2}$, (c) oblique $S=500 \times 500 \mathrm{~nm}^{2}$ and (d) plane.
from K.M. Gambaryan et al J. Phys. D 41, 162004 (2008)

Application of Quantum dots:
High performance transistors and lasers
Quantum dot technology is one of the most promising candidates for use in solid-state quantum computation.

Setting equations

Fig. 1 (a) Strongly oblate ellipsoidal quantum dot. (b) Strongly prolate ellipsoidal quantum dot
b)

1

In the effective mass approximation of the $\overrightarrow{\boldsymbol{k}} \cdot \overrightarrow{\boldsymbol{p}}$ theory the Schrödinger equation for the slow varying envelope function $\Psi(\vec{r}) \equiv \Psi^{e(h)}(\vec{r})$ of an impurity electron (e) or hole (h) under the influence of a uniform magnetic field $\overrightarrow{\boldsymbol{H}}$ with vector-potential $\vec{A}=\frac{1}{2} \overrightarrow{\boldsymbol{H}} \times \vec{r}$ and electric field $\overrightarrow{\boldsymbol{F}}$ in QD, QW, or QWr reads as

$$
\left\{\frac{1}{2 \mu}\left(\hat{\vec{p}}-\frac{q_{1}}{c} \vec{A}\right)^{2}+q_{1}(\vec{F} \cdot \vec{r})+U_{c o n f}(\vec{r})-\frac{q}{\kappa|\vec{r}|}-E\right\} \Psi(\vec{r})=0
$$

Here $\overrightarrow{\boldsymbol{r}}$ is the radius-vector, $|\vec{r}|=\sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\boldsymbol{z}^{2}}$,
$\boldsymbol{q}=\boldsymbol{q}_{1} \boldsymbol{q}_{2} \boldsymbol{e}$, where $\boldsymbol{q}_{1}= \pm \boldsymbol{e}$ and $\boldsymbol{q}_{2} \boldsymbol{e}$ are the Coulomb charges of the electron (hole) and the impurity center, $\boldsymbol{\kappa}$ is the dc permittivity,
$U_{\text {conf }}(\vec{r})$ is infinite or finite (Woods-Saxon) well confinement potential
$\boldsymbol{\mu}=\boldsymbol{\beta} \boldsymbol{m}_{\boldsymbol{e}}$ is the effective mass of the electron or hole and reduced atomic units (for example, in GaAs $q=1, \kappa=13.18, \beta_{e}=0,067, \beta_{h}=\beta_{e} / 0.12$), $a_{e}=\left(\kappa / \beta_{e}\right) a_{B}=102 \AA, E_{e}=\left(\beta_{e} / \kappa^{2}\right) R y=5.2 \mathrm{meV}, a_{h}=15 \AA$, $E_{h}=\left(\beta_{h} / \kappa^{2}\right) R y=49 \mathrm{meV}, \gamma=H / H_{0}^{*}, H_{0}^{*}=6 \mathrm{~T}, \gamma_{F}=F / F_{0}^{*}$, $\left.F_{0}=133 \mathrm{kV} / \mathrm{cm}\right)$.

Fast and slow variables for QD, QWr and QW models

Systems of cylindrical $(\boldsymbol{z}, \boldsymbol{\rho}, \boldsymbol{\varphi})$ and spherical $\square \quad$ CC \quad SC $(r, \eta=\cos \theta, \varphi)$ coordinates(at shift $\left.\boldsymbol{z}_{c}=0\right)$: (a) for QD, QWr and (a) for QD, QW and their correspondence to fast $\boldsymbol{x}_{\boldsymbol{f}}$ and slow $\boldsymbol{x}_{\boldsymbol{s}}$ variables. Comment. One can see that in cylindrical coordinates: a) for QD, $\mathrm{QWr} \boldsymbol{x}_{f}=\rho, \boldsymbol{x}_{\boldsymbol{s}}=\boldsymbol{z}$, b) for QD, QW $\boldsymbol{x}_{\boldsymbol{f}}=\boldsymbol{z}, \boldsymbol{x}_{\boldsymbol{s}}=\boldsymbol{\rho}$, i.e. fast and slow variables are changed places. In spherical coordinates for QD, QW and QWr fast $\boldsymbol{x}_{\boldsymbol{f}}=\boldsymbol{\eta}$ and slow $\boldsymbol{x}_{s}=\boldsymbol{r}$ variables are the same.

	OSQD	PSQD	SQD
\boldsymbol{x}_{f}	\boldsymbol{z}	ρ	$\boldsymbol{\eta}$
\boldsymbol{x}_{s}	ρ	z	\boldsymbol{r}
$\boldsymbol{g}_{1 f}$	1	ρ	1
$\boldsymbol{g}_{2 f}$	1	ρ	$1-\eta^{2}$
$\boldsymbol{g}_{1 s}$	ρ	1	\boldsymbol{r}^{2}
$\boldsymbol{g}_{2 s}$	ρ	1	\boldsymbol{r}^{2}
$\boldsymbol{g}_{3 s}$	1	1	\boldsymbol{r}^{2}

Close-coupling and Kantorovich (Adiabatic) methods

The Schrödinger equation reads as
$\left(\frac{1}{g_{3 s}\left(x_{s}\right)} \hat{H}_{2}\left(x_{f} ; x_{s}\right)+\hat{H}_{1}\left(x_{s}\right)+\hat{V}_{f s}\left(x_{f}, x_{s}\right)-2 E\right) \Psi\left(x_{f}, x_{s}\right)=0$,
$\hat{H}_{2}=-\frac{1}{g_{1 f}\left(x_{f}\right)} \frac{\partial}{\partial x_{f}} g_{2 f}\left(x_{f}\right) \frac{\partial}{\partial x_{f}}+\hat{V}_{f}\left(x_{f} ; x_{s}\right)$,
$\hat{H}_{1}=-\frac{1}{g_{1 s}\left(x_{s}\right)} \frac{\partial}{\partial x_{s}} g_{2 s}\left(x_{s}\right) \frac{\partial}{\partial x_{s}}+\hat{V}_{s}\left(x_{s}\right)$.
$\hat{\boldsymbol{H}}_{2}\left(\boldsymbol{x}_{\boldsymbol{f}} ; \boldsymbol{x}_{\boldsymbol{s}}\right)$ is the Hamiltonian of the fast subsystem,
$\hat{\boldsymbol{H}}_{1}\left(\boldsymbol{x}_{s}\right)$ is the Hamiltonian of the slow subsystem,
$V_{f s}\left(x_{f}, x_{s}\right)$ is interaction potential.
The Kantorovich expansion of the desired solution of BVP:
$\Psi\left(x_{f}, x_{s}\right)=\sum_{j=1}^{j_{\text {max }}} \Phi_{j}\left(x_{f} ; x_{s}\right) \chi_{j}\left(x_{s}\right)$.

BVP for fast subsystem

The equation for the basis functions of the fast variable $\boldsymbol{x}_{\boldsymbol{f}}$ and the potential curves, $\boldsymbol{E}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\boldsymbol{s}}\right)$ continuously depend on the slow variable $\boldsymbol{x}_{\boldsymbol{s}}$ as a parameter

$$
\left\{\hat{H}_{2}\left(x_{f} ; x_{s}\right)-E_{i}\left(x_{s}\right)\right\} \Phi_{i}\left(x_{f} ; x_{s}\right)=0
$$

The boundary conditions at $x_{f}^{b}\left(x_{s}\right), b=\min , \max$
$\lim _{x_{f} \rightarrow x_{f}^{b}\left(x_{s}\right)}\left(N_{f}\left(x_{s}\right) g_{2 f}\left(x_{s}\right) \frac{d \Phi_{j}\left(x_{f} ; x_{s}\right)}{d x_{f}}+D_{f}\left(x_{s}\right) \Phi_{j}\left(x_{f} ; x_{s}\right)\right)=0$.
The normalization condition

$$
x_{f}^{\text {max }}\left(x_{s}\right)
$$

$\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle=\int_{x_{f}^{\min }\left(x_{s}\right)} \Phi_{i}\left(x_{f} ; x_{s}\right) \Phi_{j}\left(x_{f} ; x_{s}\right) g_{1 f}\left(x_{f}\right) d x_{f}=\delta_{i j}$.

BVP for slow subsystem

The effective potential matrices of dimension $j_{\text {max }} \times \boldsymbol{j}_{\text {max }}$:

$$
\begin{aligned}
U_{i j}\left(x_{s}\right) & =\frac{1}{g_{3 s}\left(x_{s}\right)} \hat{E}_{i}\left(x_{s}\right) \delta_{i j}+\frac{g_{2 s}\left(x_{s}\right)}{g_{1 s}\left(x_{s}\right)} W_{i j}\left(x_{s}\right)+V_{i j}\left(x_{s}\right), \\
V_{i j}\left(x_{s}\right) & =\int_{x_{f}^{\max }\left(x_{s}\right)}^{x_{f}^{\min }\left(x_{s}\right)} \Phi_{i}\left(x_{f} ; x_{s}\right) V_{f s}\left(x_{f}, x_{s}\right) \Phi_{j}\left(x_{f} ; x_{s}\right) g_{1 f}\left(x_{f}\right) d x_{f}, \\
W_{i j}\left(x_{s}\right) & =\int_{x_{f}^{\min }\left(x_{s}\right)}^{x_{f}^{\max }\left(x_{s}\right)} \frac{\partial \Phi_{i}\left(x_{f} ; x_{s}\right)}{\partial x_{s}} \frac{\partial \Phi_{j}\left(x_{f} ; x_{s}\right)}{\partial x_{s}} g_{1 f}\left(x_{f}\right) d x_{f} \\
Q_{i j}\left(x_{s}\right) & =-\int_{x_{f}^{\min }\left(x_{s}\right)}^{x_{f}^{\max }\left(x_{s}\right)} \Phi_{i}\left(x_{f} ; x_{s}\right) \frac{\partial \Phi_{j}\left(x_{f} ; x_{s}\right)}{\partial x_{s}} g_{1 f}\left(x_{f}\right) d x_{f}
\end{aligned}
$$

BVP for slow subsystem

The SDE for the slow subsystem (the adiabatic approximation is a diagonal approximation for the set of ODEs)

$$
\begin{aligned}
& \mathrm{H} \chi^{(i)}\left(x_{s}\right)=2 E_{i} \mathrm{I} \chi^{(i)}\left(x_{s}\right), \\
& \mathrm{H}=-\frac{1}{g_{1 s}\left(x_{s}\right)} \mathbf{I} \frac{d}{d x_{s}} g_{2 s}\left(x_{s}\right) \frac{d}{d x_{s}}+\hat{V}_{s}\left(x_{s}\right) \mathrm{I}+\mathrm{U}\left(x_{s}\right) \\
&+\frac{g_{2 s}\left(x_{s}\right)}{g_{1 s}\left(x_{s}\right)} \mathrm{Q}\left(x_{s}\right) \frac{d}{d x_{s}}+\frac{1}{g_{1 s}\left(x_{s}\right)} \frac{d g_{2 s}\left(x_{s}\right) \mathrm{Q}(z)}{d x_{s}}
\end{aligned}
$$

with the boundary conditions at $x_{s}^{b}, \boldsymbol{b}=\min , \max$

$$
\lim _{x_{s} \rightarrow x_{s}^{b}}\left(N_{s} g_{2 s}\left(x_{s}\right) \frac{d \chi\left(x_{s}\right)}{d x_{s}}+D_{s} \chi\left(x_{s}\right)\right)=0 .
$$

Basis functions and effective potentials

For oblate spheroidal QDs $\left(x_{f}=\boldsymbol{z}, \boldsymbol{x}_{s}=\boldsymbol{\rho}\right)$ with impenetrable walls

$$
\begin{aligned}
& B_{i}\left(x_{f} ; x_{s}\right)=B_{i}^{\sigma}\left(x_{f} ; x_{s}\right)=\sqrt{\frac{a}{c \sqrt{a^{2}-x_{s}^{2}}}} \sin \left(\frac{\pi n_{o}}{2}\left(\frac{x_{f}}{c \sqrt{1-x_{s}^{2} / a^{2}}}-1\right)\right), \\
& E_{i}\left(x_{s}\right)=E_{i}^{\sigma}\left(x_{s}\right)=E_{i ; 0} \frac{a^{2}}{\left(a^{2}-x_{s}^{2}\right)}, \quad E_{i ; 0}=\frac{\pi^{2} i^{2}}{4 c^{2}}, \quad U_{i i}\left(x_{s}\right)=0, \\
& U_{i j}\left(x_{s}\right)=U_{i j ; 0}\left(x_{s}\right) \frac{\sqrt{a^{2}-x_{s}^{2}}}{a}, \quad U_{i j ; 0}\left(x_{s}\right)=\frac{8 \gamma_{F} c i j\left(-1+(-1)^{i+j}\right)}{\left(i^{2}-j^{2}\right)^{2} \pi^{2}}, \\
& H_{i i}\left(x_{s}\right)=H_{i i ; 0}\left(x_{s}\right) \frac{a^{2} x_{s}^{2}}{\left(a^{2}-x_{s}^{2}\right)^{2}}, \quad H_{i i ; 0}\left(x_{s}\right)=\frac{3+\pi^{2} i^{2}}{12 a^{2}}, \\
& H_{i j}\left(x_{s}\right)=H_{i j ; 0}\left(x_{s}\right) \frac{a^{2} x_{s}^{2}}{\left(a^{2}-x_{s}^{2}\right)^{2}}, \quad H_{i j ; 0}\left(x_{s}\right)=\frac{2 i j\left(i^{2}+j^{2}\right)\left(1+(-1)^{i+j}\right)}{a^{2}\left(i^{2}-j^{2}\right)^{2}}, \\
& Q_{i j}\left(x_{s}\right)=Q_{i j ; 0}\left(x_{s}\right) \frac{a x_{s}}{a^{2}-x_{s}^{2}}, \quad Q_{i j ; 0}\left(x_{s}\right)=\frac{i j\left(1+(-1)^{i+j}\right)}{a\left(i^{2}-j^{2}\right)}, \quad j \neq i .
\end{aligned}
$$

The convergence of eigenenergy \mathcal{E}_{t} vs number $\boldsymbol{j}_{\text {max }}$ of basis functions at $\gamma_{F}=0$.

Fast and slow variables $\boldsymbol{x}_{\boldsymbol{f}}=\boldsymbol{z}$ and $\boldsymbol{x}_{\boldsymbol{s}}=\boldsymbol{\rho}$ (oblate SQD and spherical QD), number of nodes $\boldsymbol{i}=\left(\boldsymbol{n}_{z o}=\boldsymbol{n}_{o}-\mathbf{1}, \boldsymbol{n}_{\rho o}\right)$, ${ }^{*}$ notes diagonal approximation at $\boldsymbol{j}=\mathbf{2}$

$\boldsymbol{j}_{\max }$	$a=\mathbf{2 . 5}, \boldsymbol{c}=\mathbf{0 . 5}$			$\boldsymbol{a}=\mathbf{2 . 5}, \boldsymbol{c}=\mathbf{2 . 5}$		
\boldsymbol{i}	$(0,0)$	$(0,1)$	$(2,0)$	$(0,0)$	$(0,1)$	$(2,0)$
C	12.73741	19.93621	96.69683^{*}	1.468496	5.445665^{*}	5.589461
1	12.76548	20.04602	96.75317^{*}	1.590238	5.766612^{*}	6.004794
2	12.76490	20.04133	96.75427	1.580243	5.340214	6.329334
4	12.76482	20.04074	96.75215	1.579273	5.316872	6.317204
16	12.76481	20.04065	96.75201	1.579140	5.314832	6.316562
Exact				1.579136	5.314793	6.316546

Fast and slow variables $\boldsymbol{x}_{\boldsymbol{f}}=\boldsymbol{\rho}$ and $\boldsymbol{x}_{\boldsymbol{s}}=\boldsymbol{z}$ (prolate SQD and spherical QD), number of nodes $\boldsymbol{i}=\left(\boldsymbol{n}_{\rho \boldsymbol{p}}, \boldsymbol{n}_{\boldsymbol{z p}}\right)$, * notes diagonal approximation at $\boldsymbol{j}=\mathbf{2}$

$\boldsymbol{j}_{\text {max }}$	$\boldsymbol{c}=\mathbf{2 . 5}, \boldsymbol{a}=\mathbf{0 . 5}$			$\boldsymbol{c}=\mathbf{2 . 5}, \boldsymbol{a}=\mathbf{2 . 5}$		
\boldsymbol{i}	$(0,0)$	$(0,2)$	$(1,0)$	$(0,0)$	$(0,2)$	$(1,0)$
C	25.18473	34.42885	126.4245^{*}	1.493612	5.131784	5.898668^{*}
1	25.20174	34.53030	126.4565^{*}	1.584433	5.680831	6.071435^{*}
2	25.20129	34.52578	126.4573	1.579860	5.331101	6.324717
4	25.20121	34.52512	126.4561	1.579239	5.316732	6.317058
16	25.20120	34.52502	126.4561	1.579138	5.314828	6.316554
Exact				1.579136	5.314793	6.316546

The Lennard-Jones perturbation theory ${ }^{1}$ in nondiagonal adiabatic approximation

We expand the above effective potentials of the BVP for slow subsystem in Taylor series in a vicinity of $\boldsymbol{x}_{\boldsymbol{s}}=\mathbf{0}$:

$$
\begin{array}{r}
E_{i}\left(x_{s}\right)=E_{i ; 0}+\sum_{k=1}^{k_{\max }} \frac{E_{i ; 0}}{\tau^{2 k}} x_{s}^{2 k}, \quad U_{i j}\left(x_{s}\right)=U_{i j ; 0}+\sum_{k=1}^{k_{\max }} \frac{\tilde{U}_{i j ; k}}{\tau^{2 k}} x_{s}^{2 k} \\
H_{i j}\left(x_{s}\right)=\sum_{k=1}^{k_{\max }} k \frac{H_{i j ; 0}}{\tau^{2 k}} x_{s}^{2 k}, Q_{i j}\left(x_{s}\right)=\sum_{k=1}^{k_{\max }} \frac{Q_{i j ; 0}}{\tau^{2 k-1}} x_{s}^{2 k-1}
\end{array}
$$

where $\tilde{\boldsymbol{U}}_{i j ; k}=\frac{(2 k-3)!!}{(2 k)!!} \boldsymbol{U}_{i j ; 0}$ and parameter τ equals $\tau=\boldsymbol{a}$ for OSQD, and $\tau=c$ for PSQD.

[^0]
The Lennard-Jones perturbation theory

It leads to the BVP for a set of ODEs of slow subsystem with respect to the unknown vector functions $\chi_{t}\left(x_{s}\right)=\left(\chi_{1 ; t}\left(x_{s}\right), \ldots, \chi_{j_{\text {max } i t}}\left(x_{s}\right)\right)^{T}$ corresponded to unknown eigenvalues $2 \boldsymbol{E}_{\boldsymbol{t}} \equiv \mathcal{E}_{\boldsymbol{t}}$:

$$
\begin{aligned}
& \left(\mathrm{D}^{(0)}+\left(E_{i ; 0}-\mathcal{E}_{t}\right)+\check{V}_{s}\left(x_{s}\right)+\sum_{k=1}^{k_{\max }} \frac{E_{i ; 0}+k H_{i i ; 0}}{\tau^{2 k}} x_{s}^{2 k}\right) \chi_{i ; t}\left(x_{s}\right) \\
& +\sum_{j \neq i}^{j_{\max }} \sum_{k=1}^{k_{\text {max }}}\left(\frac{\tilde{U}_{i j ; k}}{\tau^{2 k}} x_{s}^{2 k}+k \frac{H_{i j ; 0}}{\tau^{2 k}} x_{s}^{2 k}+(2 k-1) \frac{Q_{i j ; 0}}{\tau^{2 k-1}} x_{s}^{2 k-2}\right. \\
& \left.\quad+2 \frac{Q_{i j ; 0}}{\tau^{2 k-1}} x_{s}^{2 k-1} \frac{d}{d x_{s}}\right) \chi_{j ; t}\left(x_{s}\right)=0
\end{aligned}
$$

Unperturbed operator of 2D oscillator

For the OSQD (2D oscillator) with respect to the scaled slow variable $\boldsymbol{x}: \boldsymbol{x}_{\boldsymbol{s}}=\boldsymbol{\rho}=\sqrt{\left.\boldsymbol{x} / \sqrt{\boldsymbol{E}_{\boldsymbol{f}}}\right)}$, where $E_{f}=\left(E_{i^{\prime} ; 0}+H_{i^{\prime} i^{\prime} ; 0}\right) /\left(4 a^{2}\right)=\omega_{i^{\prime}}^{2} / 4$, i.e. adiabatic frequency, at given $i^{\prime}=n_{o}$

$$
\begin{aligned}
& L(n)=\mathrm{D}^{(0)}-E^{(0)}, \quad \mathrm{D}^{(0)}=-\left(\frac{d}{d x} x \frac{d}{d x}-\frac{x}{4}-\frac{m^{2}}{4 x}\right) \\
& \quad E^{(0)} \equiv E_{n, m}^{(0)}=n+(|m|+1) / 2 \\
& \Phi_{q}^{(0)}(x)=\frac{\sqrt{q!} x^{|m| / 2} \exp (-x / 2) L_{q}^{|m|}(x)}{\sqrt{(q+|m|)!}} \\
& \quad \int_{0}^{\infty} \Phi_{q}^{(0)}(x) \Phi_{q^{\prime}}^{(0)}(x) d x=\delta_{q q^{\prime}} .
\end{aligned}
$$

Unperturbed operator of 2D oscillator

Therefore action of operators $L(\boldsymbol{n})$ and \boldsymbol{x} on function $\boldsymbol{\Phi}_{q}^{(0)}(x) \equiv \boldsymbol{\Phi}_{q, m}^{(0)}(x)$ is determined by recurrence relations

$$
\begin{aligned}
& L(n) \Phi_{q, m}^{(0)}(x)=(q-n) \Phi_{q, m}^{(0)}(x), \\
& x \Phi_{q, m}^{(0)}(x)=-\sqrt{q+|m|} \sqrt{q} \Phi_{q-1, m}^{(0)}(x)+ \\
& +(2 q+|m|+1) \Phi_{q, m}^{(0)}(x)-\sqrt{q+|m|+1} \sqrt{q+1} \Phi_{q+1, m}^{(0)}(x), \\
& x \frac{d \Phi_{q, m}^{(0)}(x)}{d x}=-\sqrt{q+|m|} \sqrt{q} \Phi_{q-1, m}^{(0)}(x) / 2 \\
& -\Phi_{q, m}^{(0)}(x) / 2+\sqrt{q+|m|+1} \sqrt{q+1} \Phi_{q+1, m}^{(0)}(x) / 2 .
\end{aligned}
$$

Expansion of solution by normalized basis functions

Eigenfunctions with respect to new scaled variable \boldsymbol{x} are sought in the form of expansion by normalized basis functions $\boldsymbol{\Phi}_{q}^{(0)}(x), q=0,1, \ldots$. of the two or one dimensional oscillators with unknown coefficients $\boldsymbol{b}_{\boldsymbol{j}, \boldsymbol{s}}$:

$$
\begin{equation*}
\chi_{j ; t}(x)=\sum_{q=0}^{q_{\max }} b_{j, q ; t} \Phi_{q}^{(0)}(x), \quad b_{j, q<0 ; t}=b_{j, q>q_{\max ; t}}=0 . \tag{1}
\end{equation*}
$$

Substitution of expansion (1) leads to a set of equations

$$
\begin{array}{r}
\sum_{q=0}^{q_{\max }} \hat{\mathbf{A}}_{i i} b_{i, q ; t} \Phi_{q}^{(0)}(x)+\sum_{j \neq i=1}^{j_{\max }} \sum_{q=0}^{q_{\text {max }}} \hat{\mathbf{A}}_{i j} b_{j, q ; t} \Phi_{q}^{(0)}(x)=\sum_{q=0}^{q_{\text {max }}} \kappa^{-2} \mathcal{E}_{t} E_{f}^{-1 / 2} b_{i, q ; t} \Phi_{q}^{(0)}(x) \\
\hat{\mathbf{A}}_{i i}=\left(\mathrm{D}^{(0)}+\check{V}_{s}(x) E_{f}^{-3 / 4}+\kappa^{-2} E_{i ; 0} E_{f}^{-1 / 2}+\kappa^{-2} \sum_{k=1}^{k_{\text {max }}} \frac{E_{i ; 0}+k H_{i i ; 0}}{\tau^{2 k} E_{f}^{(k+1) / 2}} x^{2 k}\right) \\
\hat{\mathbf{A}}_{i j}=\kappa^{-2} \sum_{k=1}^{k_{\max }}\left(\frac{\tilde{U}_{i j ; k}+k H_{i j ; 0}}{\left.\tau^{2 k} E_{f}^{(k+1) / 2} x_{s}^{2 k}+\frac{Q_{i j ; 0}}{\tau^{2 k-1} E_{f}^{k / 2}}\left((2 k-1) x^{2 k-2}+2 x^{2 k-1} \frac{d}{d x}\right)\right)} .\right.
\end{array}
$$

where $\kappa=\mathbf{2}$ and $\check{\boldsymbol{V}}_{\boldsymbol{s}}\left(\boldsymbol{x}_{\boldsymbol{s}}\right)=\mathbf{0}$ for OSQD and $\kappa=\mathbf{1}$ and $\check{\boldsymbol{V}}_{\boldsymbol{s}}(\boldsymbol{x})=\boldsymbol{\gamma}_{\boldsymbol{F}} \boldsymbol{x}$ for PSQD.

Algebraic eigenvalue problem

Applying above recurrence relations for action of a first derivative on basis function, we get expressions for action of operators $\hat{\mathbf{A}}_{\boldsymbol{i j}}$:

$$
\hat{\mathbf{A}}_{i j} \Phi_{q}^{(0)}(x)=\sum_{q^{\prime}=0}^{q_{\max }} \alpha_{i j ; q q^{\prime}} \Phi_{q^{\prime}}^{(0)}(x)
$$

and therefore, algebraic eigenvalue problem with respect to unknowns $\boldsymbol{E}_{\boldsymbol{t}}$ and $\boldsymbol{b}_{\boldsymbol{j}, \boldsymbol{q} ; \boldsymbol{t}}$
$\sum_{q=0}^{q_{\text {max }}} \alpha_{i i ; q^{\prime} q} b_{i, q ; t}+\sum_{j \neq i=1}^{j_{\text {max }}} \sum_{q=0}^{q_{\text {max }}} \alpha_{i j ; q^{\prime} q} b_{j, q ; t}=\kappa^{-2} \mathcal{E}_{t} E_{f}^{-1 / 2} b_{i, q ; t}$.

Algebraic eigenvalue problem

In matrix form it reads as

$$
\mathrm{AB}_{t}=\kappa^{-2} \mathcal{E}_{t} E_{f}^{-1 / 2} \mathrm{~B}_{t}, \quad \mathrm{~B}_{t^{\prime}}^{T} \mathrm{~B}_{t}=\delta_{t t^{\prime}}
$$

where $\mathrm{B}_{t}=\left(b_{1,0 ; t}, b_{1,1 ; t}, \ldots, b_{1, q_{\max } ; t}, b_{2,0 ; t}, \ldots, b_{j_{\max }, q_{\max } ; t}\right)^{T}$ is vector with dimension of $j_{\max }\left(q_{\max }+1\right)$ and \mathbf{A} is positive defined symmetric matrix with dimension of
$\left(j_{\max }\left(q_{\text {max }}+1\right)\right) \times\left(j_{\text {max }}\left(q_{\text {max }}+1\right)\right)$ with elements $A_{\left(q_{\max }+1\right)(i-1)+q+1,\left(q_{\max }+1\right)(j-1)+q^{\prime}+1}=\alpha_{i j ; q q^{\prime}}$.

Result

The convergence of eigenenergies $\mathcal{E}_{\boldsymbol{t}}$ of Eq. (2) vs order $\boldsymbol{k}_{\text {max }}$ of approximation of effective potentials from (1) for $j_{\max }=4$ and $\boldsymbol{q}_{\text {max }}=\mathbf{6 0}$ basis functions at $\gamma_{F}=\mathbf{0}$. Fast and slow variables $\boldsymbol{x}_{\boldsymbol{f}}=\rho$ and $\boldsymbol{x}_{\boldsymbol{s}}=\boldsymbol{z}$ (prolate SQD and spherical QD), number of nodes $i=\left(n_{\rho p}, n_{z p}\right)$.

$\boldsymbol{k}_{\max }$	$\boldsymbol{c}=\mathbf{2 . 5}, \boldsymbol{a}=\mathbf{0 . 5}$			$\boldsymbol{c}=\mathbf{2 . 5}, \boldsymbol{a}=\mathbf{2 . 5}$		
\boldsymbol{i}	$(0,0)$	$(0,2)$	$(1,0)$	$(0,0)$	$(0,2)$	$(1,0)$
8	25.17914	34.07677	126.4459	1.471911	4.270174	5.614892
12	25.19962	34.46884	126.4560	1.536121	4.716984	6.188144
20	25.20116	34.52202	126.4561	1.563492	5.182198	6.266533
$\mathrm{~N}(4)$	25.20121	34.52512	126.4561	1.579239	5.316732	6.317058

The same at $\gamma_{\boldsymbol{F}}=\mathbf{- 1 0}$.

$\boldsymbol{k}_{\max }$	$\boldsymbol{c}=\mathbf{2 . 5}, \boldsymbol{a}=\mathbf{0 . 5}, \boldsymbol{\gamma}_{\boldsymbol{F}}=\mathbf{- 1 0}$		$\boldsymbol{c}=\mathbf{2 . 5}, \boldsymbol{a}=\mathbf{2 . 5}, \boldsymbol{\gamma}_{\boldsymbol{F}}=\mathbf{- 1 0}$			
\boldsymbol{i}	$(0,0)$	$(0,2)$	$(1,0)$	$(0,0)$	$(0,2)$	$(1,0)$
8	20.22165	30.91336	125.3062	-19.67398	-5.378707	-1.784110
12	20.60733	32.37540	125.3316	-15.34850	-6.881266	-2.605091
20	20.65846	32.67445	125.3322	-12.19445	-2.204160	-1.336853
$\mathrm{~N}(\mathbf{4})$	20.66203	32.70877	125.3322	-10.84402	-1.511063	1.129039

Spectrum of electronic states of QDs vs electric field

Dependence of eigenenergies \mathcal{E} (in units of \boldsymbol{E}_{e}) of lower part of spectrum of electronic states of QDs at $\boldsymbol{m}=\mathbf{0}$ on electric field strength $\boldsymbol{\gamma}_{\boldsymbol{F}}$ (in units of $\boldsymbol{F}_{\mathbf{0}}^{*}$): for spherical quantum dot (SQD) with radius $a=c=\mathbf{2 . 5}$, oblate and prolate spheroidal quantum dots (OSQD and PSQD) at different minor semiaxis (for OSQD $\boldsymbol{c}=\mathbf{0 . 5}, \mathbf{1}, \mathbf{1 . 5}, \mathbf{2}$, $a=\mathbf{2 . 5}$, for PSQD $\boldsymbol{c}=\mathbf{2 . 5}, a=\mathbf{0 . 5}, \mathbf{1}, \mathbf{1 . 5}, \mathbf{2}$).

Absorption coefficient of inter-band transitions in QDs

Absorption coefficient $\boldsymbol{K} / \boldsymbol{K}_{\mathbf{0}}$ consists of sum of the first partial contributions vs the energy $\boldsymbol{\lambda}=\boldsymbol{\lambda}_{\mathbf{1}}$ of the optic interband transitions for the Lifshits-Slezov distribution by using functions $f_{\nu, \nu^{\prime}}^{h-e}(u)$ for GaAs ($h \rightarrow e$): (left panels) for assemble of OSQDs $\bar{c}=\mathbf{0 . 5}, \boldsymbol{a}=\mathbf{2 . 5}$; (right panels) for assemble of PSQDs $\overline{\boldsymbol{a}}=\mathbf{0 . 5}, \boldsymbol{c}=\mathbf{2 . 5}$ in presence of electric field $\gamma_{F}=10$ and $\gamma_{F}=\mathbf{1}$ (solid lines on lower panels) and without electric field $\gamma_{\boldsymbol{F}}=\mathbf{0}$ (Upper panels and dashed line on lower panels).

Conclusion

- Symbolic-numerical algorithms for solving the BVPs are developed and elaborated in a problem-oriented complex of programs, now available via the Computer Physics Communication Library.
- The revealed difference in the spectra and the absorption coefficients allows verification of OSQD and PSQD models using the experimental data, e.g., photo-absorption coefficient and conductivity, from which not only the energy level spacing, but also the mean geometric dimensions of QDs can be estimated.
- The adiabatic approximations implemented in the both numerical and analytic forms can be applied also to treat a lower part of spectra of models of deformed nuclei.
- The results are also important for the experimental study of low-energy nuclear reactions of channeling ions in thin films and crystals by using elaborated Symbolic-Numerical Algorithms and Programs.

[^0]: ${ }^{1}$ N. Mott and I. Sneddon, Wave Mechanics and its Applications (Clarendon, Oxford, 1948).

