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OUTLINE

® Problems. In effective mass approximation for electronic (hole) states
of spheroidal quantum dots under influence of the homogeneous electric
field the boundary-value problems are formulated in the framework of
Kantorovich and adiabatic methods.

e Methods. The different perturbation theory schemes are derived by
using sets of adiabatic basis functions given in analytical form.

® Results. Comparative analysis of eigenvalues and eigenfunctions of the
problem is presented based on both numerical and analytical methods.

e Applications Calculations of absorption coefficient of ensembles of
spheroidal quantum dots in the homogeneous electric fields.



Problem

Spectral and optical characteristics of models of bulk semiconductor and
low dimensional semiconductor nanostructures: quantum wells(QWs),
quantum wires(QWrs) and quantum dots(QDs)
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Bulk Quantum well Quantum wire Quantum dot

Figure 16.1-20 The density of states in different confinement configurations. The conduction and
valence bands split into overlapping subbands that become successively narrower as the electron
motion is restricted in a greater number of dimensions.

from B.E.A. Saleh M.C. Teich, Y —_—
Fundamentals of photonics  (Wiley, =7 et S i e
2007) from K.M. Gambaryan et al J. Phys. D

41, 162004 (2008)
Application of Quantum dots:

High performance transistors and lasers
Quantum dot technology is one of the most promising candidates for use
in solid-state quantum computation.
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Setting equations

b) In the effective mass approximation of the fé-ﬁ
theory the Schrédinger equation for the slow
varying envelope function ¥ (7) = we(?) (7)
of an impurity electron (e) or hole (h)
under the influence of a uniform magnetic
field H with vector-potential A= %I‘T X 7
and electric field F in QD, QW, or QWr reads

Fig. 1 (a) Strongly oblate ellipsoidal quantum dot. (b) Strongly as
prolate ellipsoidal quantum dot

- N2 -
{a(F=ZA)" + au(F 7 + Ueons () = o — B} w7 = 0,
20 c K|7]

Here 7 is the radius-vector, |7] = \/:1:2 + y2 + 22,

q = g1g2e, where g1 = te and gze are the Coulomb charges of the electron (hole)
and the impurity center, k is the dc permittivity,

Ucon g (7) is infinite or finite (Woods-Saxon) well confinement potential

p = Bme is the effective mass of the electron or hole and reduced atomic units

(for example, in GaAs g =1,k = 13.18, B = 0,067, B, = B3./0.12),

ac = (k/Be)ap = 102A, E. = (Be/x?)Ry = 5.2 meV, ap, = 15A,

En, = (Bn/k?)Ry =49 meV, v = H/H}, H; = 6T, v = F/Fg,

Fp = 133kV/cm).



Fast and slow variables for QD, QWr and QW models
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Systems of cylindrical (z,p,¢) and spherical[

(r,m = cos 0, ¢) coordinates(at shift z. = 0):

(a) for QD, QWr and (a) for QD, QW and their

correspondence to fast ¢ and slow x5 variables.
Comment. One can see that in cylindrical

coordinates: a) for QD, QWr zy = p, s = z,

b) for QD, QW zy = 2z, s = p, i.e fast
and slow variables are changed places. In spherical

coordinates for QD, QW and QWr fast &y = n
and slow @5 = 7 variables are the same.

CC SC
OSQD | PSQD | SQD

x5 z P n
T p z r
g1y 1 [ 1
gzf 1 P 1—n?
dis P 1 r2
g2s P 1 r?
g3s 1 1 T2




Close-coupling and Kantorovich (Adiabatic) methods

The Schrédinger equation reads as

1 o 2 N
( Hy(xgp;25)+Hi(xs) + Vis(xy, :l?s)—ZE)\Il(a:f,ms) =0,
g3s(ws)
. 1 15) 1)
Hoy=——"—+ g2f( f) +Vf(wfaxs)a
grr(zy) Oy
N 1 o 8
Hi=—-—"— ng( s) +V (:133)

gls(ws) oz,

Hy(xs;x,) is the Hamiltonian of the fast subsystem,

H; (x,) is the Hamiltonian of the slow subsystem,

Vis(x g, s) is interaction potential.

The Kantorovich expansion of the desired solution of BVP:
Jmax

U(zs,ms) = Y ®j(ws525)x;(ws)-
j=1



BVP for fast subsystem

The equation for the basis functions of the fast variable ¢ and the
potential curves, E;(xs) continuously depend on the slow variable x5 as
a parameter
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The boundary conditions at a:'}(a:s), b = min, max

lim ; (Nf (ms)ng (zs)

mf—>wt} (zs

d®; sy Ls
a®;(ws; a) + Df(ws)q)j(mf;ws)) —0.
dil?f

The normalization condition
m‘;‘ax(ms)

(@i )= / Qi(zs3ws) (g3 ws)grr (v )dry =0i;.

acf"‘i" (zs)



BVP for slow subsystem

The effective potential matrices of dimension jmax X Jmax:

1 ~ g2s(x
Uij(xzs)= E;(xs)di;+ 2s S)Wij(ws) + Vij(xs),
935(:1:3) gls(ws)
2 (zs)
Vij(zs) = / Qi (zp;xs) Vis(zp,xs)®j(Tr;xs)grp(xy)day,
a:‘];“i“(a:s)
D o ( ) 8 ( )
i\ L s L N\ L £3
Wij(xs) = Do) T e g (wp)day,
Oxg oxg
m;{‘i“(ms)
2P (z,) 0 ( :
(@43 T
Qij(zs) = — / ‘I’i(xf;ics)JaT’glf(wf)dwf'
S

mrfnin (zs)



BVP for slow subsystem

The SDE for the slow subsystem (the adiabatic approximation is a
diagonal approximation for the set of ODEs)

Hx(i) (zs) = 2E; Ix(i)(ajs),

1 d
H=-— gls(ws) d ng(ms) +V($3)I+U(3§s)
923(:173) i ]- ngs (ws)Q(z)
+gls(x8) Q=) dws g1s(Ts) dz,

with the boundary conditions at %, b = min, max

x( s)

S

lim < sg2s(ms)

:_z:s—nl:g

+ sz(ws)> =



Basis functions and effective potentials

For oblate spheroidal QDs (zf = z, s = p) with impenetrable walls

a . ™, T
B; (mféa:s) = B (mf;ms):\/c\/a?—aﬁ sin <20 <c\/1—ic2ﬁl,2 = 1>) 5
S S

a? 7242
Ei(ws) = Ef(fcs) = Ei;ow, E;.0 = F, Uii(ms) =0,
_ Vo —a? _ Sypeij(=1 + (=1)it)
Uij (ms) = Uij;O(ms)T’ Uij;O(ms) = ('i2 —j2)27r2 )
a?x? 3 4 w242
Hii(flis) = Hii;o(ws)ma Hii;o(ics) = W,
a?x? 2i5(i% + 32)(1 + (—1)*tJ
H;j(zs) = Hijjo(zs) - Hjo(xs) = 3( ) 1) ),

(o —a2)*’

ij —1)i+3
Qij(ms) = Qz‘j;O(ms)ﬁy Qij;O(ms) = M

@2 a(i? —j2)
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The convergence of eigenenergy &€; vs number Jmax of basis
functions at yp =0 .

Fast and slow variables £y = z and s = p (oblate SQD and spherical QD), number
of nodes i = (N0 = No — 1,Mp0), * notes diagonal approximation at j = 2

Fhnesz a=2.5¢c=0.5 a=2.5¢c=2.5

7 (0,0) (0,1) (2,0) (0,0) (0,1) (2,0)

C 12.737 41 | 19.936 21 | 96.696 83* 1.468 496 | 5.445 665* | 5.589 461
1 12.765 48 | 20.046 02 | 96.753 17* 1.590 238 | 5.766 612* | 6.004 794
2 12.764 90 | 20.041 33 | 96.754 27 1.580 243 | 5.340 214 6.329 334
4 12.764 82 | 20.040 74 | 96.752 15 1.579 273 | 5.316 872 6.317 204
16 12.764 81 | 20.040 65 | 96.752 01 1.579 140 | 5.314 832 6.316 562
Exact 1.579 136 | 5.314 793 6.316 546

Fast and slow variables y = p and &s = 2z (prolate SQD and spherical QD),
number of nodes ¢ = (npp,nzp), * notes diagonal approximation at j = 2

Fhnesz c=2.5,a=0.5 c=2.5a=25

7 (0,0) (0,2) (1,0) (0,0) (0,2) (1,0)

C 25.184 73 | 34.428 85 | 126.424 5* 1.493 612 | 5.131 784 | 5.898 668*
1 25.201 74 | 34.53030 | 126.456 5* 1.584 433 | 5.680 831 | 6.071 435*
2 25.201 29 | 34.52578 | 126.457 3 1.579 860 | 5.331 101 | 6.324 717
4 25.201 21 | 34.52512 | 126.456 1 1.579 239 | 5.316 732 | 6.317 058
16 25.201 20 | 34.52502 | 126.456 1 1.579 138 | 5.314 828 | 6.316 554
Exact 1.579 136 | 5.314793 | 6.316 546




The Lennard-Jones perturbation theory! in nondiagonal
adiabatic approximation

We expand the above effective potentials of the BVP for slow
subsystem in Taylor series in a vicinity of 5 = O:

Emax Emax

7. 'L ,k
E (ws) — ’LO + Z 0 §k7 Uzg (ws) — 'LJ,O + Z J 2k

Emax 0 kmax Q i0
1,3 2k 135 2k—1
zj (:BS) — Z k s 9 ij(ms) = Z TZkLImS Y

k=1

where U”’k = %Uﬁ;o and parameter T equals 7 = a for OSQD,

and 7 = ¢ for PSQD.

IN. Mott and I. Sneddon, Wave Mechanics and its Applications (Clarendon,
Oxford, 1948).



The Lennard-Jones perturbation theory

It leads to the BVP for a set of ODEs of slow subsystem with respect to
the unknown vector functions x;(Zs) = (X1;¢(Ts) 5 +++s Xjmanse (€5)) T
corresponded to unknown eigenvalues 2E; = &;:

k
max E kHll

(D(O) + (Bio — &) + Va(ms) + Y % Zk) Xist (%s)
k=1

Jmax Emax Uiin T Qiio

75 1, g %H —

+2 > (Ték 22+ ka4 2k — 1) Tl
j#i k=1

QlJa 2k 1 d

+27.2k 1T dxs ) ijt(ms) =0,



Unperturbed operator of 2D oscillator

For the OSQD (2D oscillator) with respect to the scaled slow variable

x:xs = p=/x/\/Ey), where
E; = (Ey0 + Hirirgo)/(4a®) = w? /4, i.e. adiabatic frequency, at
given i/ = n,

L(n)=D® —EO® DO = _ (x - -

E© = EO), = n+ (jm| +1)/2,

82 (z) = Valzl™/? exp(—x/2) LI (x)
! (a+ [m])! ’

oo
© ©
/0 e, ()@, (z)dz = dqq'-



Unperturbed operator of 2D oscillator

Therefore action of operators L(n) and « on function
@) (x) = ®{°) (x) is determined by recurrence relations

L(n)@®, (z) = (g — )@, (),
2@ (x) = —/q + [m]y/q@>, . (x) +
+(2q + [m| + )20 (x) — /g + [m[ + 1/q + 182, . (),

d®(0)
x dw() —Va+Imlvae, . (z)/2

80 (x)/2+ /g + [m[ + 1/q + 187, . (x)/2.




Expansion of solution by normalized basis functions

Eigenfunctions with respect to new scaled variable & are sought in the
form of expansion by normalized basis functions 'I)I(IO)(:C), q=20,1,....
of the two or one dimensional oscillators with unknown coefficients b q:

dmax
Xj;t(w) = Z bj?q;tQI(IO) (m)’ bqu<0;t = bj7q>Qmax§t =0. (1)
q=0

Substitution of expansion (1) leads to a set of equations

dmax Jmax dmax dmax

Z Aiibigu®P (@) + Y Y A g @0 (@) = Y k28 E; Y b 002 (2)
Jj#i=1 q=0 q=0
kmax
Ay = DO 4V =8/4 | —2p pTlZ -2 Eiso + kHiio oy,
s (D V@B, R B0 By ke1 TzkE](ckJrl)/z &

k -
- O me e BFg Qiio B . d
L 2 53 70 2k s _ 2k—2 2k—1
Ay =k E ( ~r2kEj(ck+1)/2 g + T2k*1E’f“/2 2k — 1) + 2z =

where k = 2 and Vi (@s) = 0 for 0SQD and k = 1 and Vi (z) = ~vrax for PSQD.



Algebraic eigenvalue problem

Applying above recurrence relations for action of a first derivative on
basis function, we get expressions for action of operators A ;;:

gmax

N 0
A0 (@) = ) Qijigq @) ()
q’'=0

and therefore, algebraic eigenvalue problem with respect to unknowns E;
and b;

3,q5t

dmax Jmax Gmax

—92 —1/2
E Qiisq/qbi g5t + E E:amqq j.qit = K gtE bi,qst

Jj#i=1 q=0



Algebraic eigenvalue problem

In matrix form it reads as
AB; = k26,E;'/?B;, B]B; = du,

where By = (b1,0;¢5 b1,15t5 +++3 b1, qmansts 02,0585 <o s bjmax,qmax;t)T is
vector with dimension of jmax(gmax + 1) and A is positive defined
symmetric matrix with dimension of

(Jmax(@max + 1)) X (Jmax(@max + 1)) with elements
A(grmax+1) (i—1)+a+1,(@max+1) G —1)+a’+1 = Xijiqq’-



Result

The convergence of eigenenergies & of Eq. (2) vs order kmax of

approximation of effective potentials from (1) for jymax = 4 and
@max = 60 basis functions at v = 0. Fast and slow variables zy = p
and 5 = z (prolate SQD and spherical QD), number of nodes

i = (Npps Nzp).-

Kmax c=2.5,a=0.5 c=2.5,a=2.5

T (0,0) (0,2) (1,0) (0,0) (0,2) (1,0)

8 25.179 14 | 34.076 77 | 126.4459 1.471911 | 4.270174 | 5.614 892

12 25.199 62 | 34.468 84 | 126.456 0 1.536 121 | 4.716 984 | 6.188 144

20 25.201 16 | 34.522 02 | 126.456 1 1.563 492 | 5.182 198 | 6.266 533

N(4) 25.201 21 | 34.52512 | 126.456 1 1.579 239 | 5.316 732 | 6.317 058
The same at vg = —10.

KEmax c= 2.5 a=0.5 v = —10 c= 2.5, a=2.5 ~ = -—10

i (0,0) (0,2) (1,0) (0,0) (0,2) (1,0)

3 20.221 65 | 30.91336 | 125.3062 || -19.67398 | -5.378 707 | -1.784 110

12 20.607 33 | 32.37540 | 125.3316 || -15.34850 | -6.881 266 | -2.605 091

20 20.658 46 | 32.674 45 | 125.3322 || -12.194 45 | -2.204 160 | -1.336 853

N(4) 20.66203 32.708 77 | 125.3322 || -10.844 02 | -1.511 063 | 1.129 039




Spectrum of electronic states of QDs vs electric field

€ (PSQD:c=25,2-20)

€ (05QD: ¢=15,a-25)

Dependence of eigenenergies € (in units of E.) of lower part of spectrum of electronic
states of QDs at m = 0 on electric field strength vz (in units of F{): for spherical
quantum dot (SQD) with radius @ = ¢ = 2.5, oblate and prolate spheroidal quantum
dots (OSQD and PSQD) at different minor semiaxis (for OSQD ¢ = 0.5,1, 1.5, 2,

a = 2.5, for PSQD ¢ = 2.5, a = 0.5,1,1.5,2).



Absorption coefficient of inter-band transitions in QDs

Absorption coefficient K/ Kg consists of sum of the first partial
contributions vs the energy A = \; of the optic interband transitions for
the Lifshits-Slezov distribution by using functions ff’;,e(u) for GaAs

(h — e): (left panels) for assemble of OSQDs € = 0.5, a = 2.5; (right
panels) for assemble of PSQDs @ = 0.5, ¢ = 2.5 in presence of electric
field 47 = 10 and v = 1 (solid lines on lower panels) and without
electric field vy = 0 (Upper panels and dashed line on lower panels).



Conclusion

eSymbolic-numerical algorithms for solving the BVPs are developed and
elaborated in a problem-oriented complex of programs, now available via
the Computer Physics Communication Library.

e The revealed difference in the spectra and the absorption coefficients
allows verification of OSQD and PSQD models using the experimental
data, e.g., photo-absorption coefficient and conductivity, from which not
only the energy level spacing, but also the mean geometric dimensions of
QDs can be estimated.

e The adiabatic approximations implemented in the both numerical and
analytic forms can be applied also to treat a lower part of spectra of
models of deformed nuclei.

e The results are also important for the experimental study of low-energy
nuclear reactions of channeling ions in thin films and crystals by using
elaborated Symbolic-Numerical Algorithms and Programs.





